Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization
نویسندگان
چکیده
منابع مشابه
Necessary and Sufficient Lyapunov-like Conditions for Robust Nonlinear Stabilization
In this work, we propose a methodology for the expression of necessary and sufficient Lyapunov-like conditions for the existence of stabilizing feedback laws. The methodology is an extension of the well-known Control Lyapunov Function (CLF) method and can be applied to very general nonlinear time-varying systems with disturbance and control inputs, including both finite and infinitedimensional ...
متن کاملHomogeneous Lyapunov functions and necessary conditions for stabilization
We provide necessary conditions for the stabilization of nonlinear control systems with the additional requirement that a time-invariant homogeneous Lyapunov function exists for the closed-loop system.
متن کاملNecessary and sufficient conditions for robust global asymptotic stabilization of discrete - time systems †
†A *C We give Lyapunov-like conditions for non-uniform in time output stabilization of discrete-time systems. Particularly, it is proved that for a discrete-time control system there exists a (continuous) output stabilizing feedback if and only if there exists a (strong) output control Lyapunov function (OCLF). Moreover, strategies for the construction of continuous robust feedback stabilizers ...
متن کاملRobust feasibility in model predictive control: Necessary and sufficient conditions
A number of results are derived for analysing the robust feasibility of a given Model Predictive Control (MPC) scheme which ignores model mismatch and/or disturbances during control input computation. The main contribution of this paper is the development of computationally tractable tests for determining the robust feasibility of an MPC controller for linear or piecewise affine systems, where ...
متن کاملRobustness of stability through necessary and sufficient Lyapunov-like conditions for systems with a continuum of equilibria
The equivalence between robustness to perturbations and the existence of a continuous Lyapunov-like mapping is established in a setting of multivalued discrete-time dynamics for a property sometimes called semistability. This property involves a set consisting of Lyapunov stable equilibria and surrounded by points from which every solution converges to one of these equilibria. As a consequence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations
سال: 2009
ISSN: 1292-8119,1262-3377
DOI: 10.1051/cocv/2009029